A Soft Real-Time, Parallel GUI Service in
Tessellation Many-Core OS *

Albert Kim, Juan A. Colmenares, Hilfi Alkaff and John Kubiatowicz
Parallel Computing Lab, CS Division, UC Berkeley
{alkim, juancol,hilfia, kubitron}@eecs.berkeley.edu

Abstract

We discuss the design and implementation of a
parallel GUI Service in Tessellation OS and investi-
gate its capability to provide soft service-time guar-
antees to visual applications. Use of GPU bandwidth
reservation permits our GUI service to miss only 0.1%
of client deadlines under an overloaded scenario, while
a more traditional windowing system misses over 50%
of its deadlines. Further, the GUI Service’s parallel ar-
chitecture nicely exploits parallelism to reduce service
times for client requests.

1 Introduction

The trend of increasing the number of cores in
client devices continues unabated. Unfortunately, the
user’s experience is not always improved by additional
cores. In particular, the behavior of graphical user
interfaces (GUIs) has remained relatively unchanged.
Users are often frustrated because they expect visual
interfaces with reduced and consistent response times
to user actions; instead they encounter jumpy, sluggish
behavior. They expect responsiveness even while run-
ning a simultaneous mix of interactive, real-time, and
high-throughput parallel applications; instead, they
confront waiting icons such as hourglasses and beach
balls. Although such application mixes are becoming
the norm, they are not well supported by today’s com-
modity operating systems (OSs).

A key element to meeting user expectations is a
GUI subsystem capable of providing differentiated ser-
vice and service-time guarantees as well as high perfor-
mance through parallelism. In this paper, we present
such a GUI subsystem. It is implemented as the GUI
Service of Tessellation OS [5], which is an experimen-
tal multi-core OS focused on enforcing resource allo-
cation guarantees for client applications. An overview
of Tessellation is given in Section 2.

*Research supported by Microsoft Award #024263, Intel
Award #024894, matching U.C. Discovery funding (Award
#DIG07-102270), and DOE ASCR FastOS Grant #DE-FG02-
08ER25849. Any opinions, findings, conclusions, or recommen-
dations expressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF.

40000

0 11 --- 30-fps deadline
‘; 35000

£ 30000
=
8 25000

S
£ 20000 0

w
< 15000
C

w
© 1
S 0000, 0

5000

End-t

ot oy T
Nano‘“m e et ¥

Figure 1: Service times of Nano-X on Linux and Tessel-

lation’s GUI Service using 1 and 4 hardware threads (HT)

for expensive video requests. Above each bar is the number

of missed deadlines.

Tessellation combines space-time partitioning and
two-level scheduling to provide performance pre-
dictability in an efficient, scalable manner. In Sec-
tion 3, we discuss how our GUI Service takes advan-
tage of Tessellation’s high degree of performance isola-
tion and customizable user-level schedulers to provide
service guarantees. A customized Constant-Bandwidth
Server [3] forms the core of the request handling logic.
We believe that the GUI Service is an embodiment of
a general software architecture for QoS-aware, parallel
services in Tessellation, and we are using it as a model
to build the Network and File Services.

In addition to providing guaranteed behavior to
existing applications, the GUI Service must perform
admission control. Traditional admission-control tests
require knowledge of clients’ timing behaviors, which
are often very difficult to determine. Instead, we pro-
pose that the GUI Service perform online profiling of
visual applications to estimate their timing models.
Based on these models the service can suggest Service
Level Agreements (SLAs) to the applications.

In Section 5, we compare the performance of Tes-
sellation’s GUI Service and the Nano-X Window Sys-
tem!, the latter representing the traditional, single-
threaded approach to window systems. We show that
the GUI Service is able to provide more predictable
service times than Nano-X and also offers reduced ser-
vice times by exploiting task parallelism. Figure 1 pro-
vides a sneak-peak at our results.

Thttp://www.microwindows.org/

|e—Application Partitions—>] |e=Perating System__

Service Partitions
Threads ! Threads ! Threads ! Threads

RICHERARERIREIGK

. N Parallel Network
Appllc.atlon Appllc_atlon File Sys. Service

Runtime Runtime) .
Runtime Runtime

OS (space-time partitioning)
1 1

1
1 1 < 31
Multicore Hardware
1 1 Disk 1 N%‘;‘;’k

Figure 2: Space-time partitioning (STP) in Tessellation
OS: a snapshot in time with four spatial partitions.

2 Overview of Tessellation OS

Tessellation [5] is built on two complementary de-
sign principles [17, 12]: space-time partitioning and
two-level scheduling. Space-time partitioning (STP)
provides performance isolation and partitioning of
resources among software components. Tessellation
divides the hardware into a set of simultaneously-
resident (spatial) partitions as shown in Figure 2. Par-
titions are virtualized and exported to applications
and OS services through an abstraction called a cell,
which is a user-level container that gives guaranteed
access to resources for a set of parallel software compo-
nents. An application running within a cell behaves as
it would when executing on a dedicated machine. Two-
level scheduling, on the other hand, separates global
decisions about resource allocation to cells (first level)
from application-specific management and scheduling
of resources within cells (second level).

The Cell Model. Applications in Tessellation are
divided into performance-isolated cells that commu-
nicate through efficient and secure channels (see Fig-
ure 3). Once resources have been assigned to cells,
the user-level runtime within each cell may utilize the
resources (e.g., hardware-thread contexts and mem-
ory pages) as they wish — without interference from
other cells. The cell’s second-level runtime can thus
be customized for specific applications or application
domain, for instance, with a particular scheduling al-
gorithm and page replacement policy. Furthermore,
the model allows cells to contain one or more address
spaces (protection domains).

Inter-cell communication is restricted to channels.
Channels (once constructed) enable fast asynchronous
message-passing communication at user-level. The
setup and tear-down of a channel is privileged and
strictly controlled by the OS.

Enabling Performance Isolation. FEach cell, when
active, is allocated a partition, which is a performance-
isolated unit of resources. Partitionable resources in-
clude hardware-thread contexts, pages in memory, and

Realtime
Component

S
Multi-Cell 4 s &
Parallel Chamrel - 2
Application g 8
<

Figure 3: Decomposing an application into a set of com-
municating components and services running with QoS
guarantees within cells. Tessellation OS provides cells that
host device drivers and OS services.

guaranteed fractional services from other cells. They
may also include guaranteed cache slices, portions of
memory bandwidth, and fractions of the energy bud-
get, when the required hardware mechanisms are avail-
able (e.g., [16, 10]).

Cells may be time-multiplexed, as implied by the
“time” component of the term space-time partition-
ing. Hardware-thread contexts and other resources
are, however, gang-scheduled [14] such that cells are
unaware of this multiplexing; i.e., unexpected virtual-
ization of physical resources does not occur.

Tessellation provides several time-multiplexing
policies for cells, some of them offering high degrees
of time predictability; they are: 1) no-multiplexing
policy (cell given dedicated access to cores), 2) time-
triggering policy (cell active during predetermined
time windows), 3) event-triggering policy (cell acti-
vated upon event arrivals, but never exceeds its as-
signed fraction of processor time), and 4) best-effort
policy (cell with no time guarantees). Tessellation
incorporates admission control to prevent cells from
compromising the timing behavior of other cells.

Support for STP consists of a combination of
hardware and software mechanisms. In this regard,
Tessellation kernel has some similarities to a hypervi-
sor (e.g., [2]), but with a crucial difference: its sole task
is to provide performance-isolated, QoS-guaranteed
containers for applications and OS services.

Adaptive Resource Allocation. Since applica-
tions’ demands may vary over time, the resources as-
signed to cells may vary as well. Tessellation attempts
to strike a balance between maximizing resource uti-
lization to achieve performance goals and selectively
idling or deactivating resources to provide QoS guar-
antees. Resource redistribution occurs at a coarse time
scale to amortize the cost of the decision-making logic
and to allow time for second-level scheduling decisions
to be effective. The decision-making logic is packaged
into a Policy Service that distributes resources to cells;
details appear elsewhere [5].

Monitor

{ Mouse
Keyboard’

Figure 4: Tessellation’s GUI Service in its dedicated cell
and interacting with applications via channels.

OS Services. Cells provide a convenient abstrac-
tion for building OS services such as device drivers,
network interfaces, file systems, and window systems.
OS services can reside in dedicated cells, have exclu-
sive control over devices, and encapsulate user-level
device drivers. Tessellation adopts a philosophy sim-
ilar to that of microkernels [11]. Unlike traditional
microkernels, however, multiple cells can be mapped
to the hardware simultaneously — allowing rapid inter-
domain communication. Further, each cell is explicitly
parallel and performance-isolated from the others.

Partitioning OS functionality into a set of inter-
acting cells helps provide predictable and reliable be-
havior due to limited interaction with the rest of the
system. QoS guarantees on shared services can be en-
forced by restricting channel communication. Alter-
natively, the capacity of overloaded services can be
increased by resizing cells.

3 GUI Service

Tessellation’s GUI Service (GuiServ) offers gen-
eral window management, with graphical, video, and
image processing services to applications. It exploits
task parallelism for improved service times, while at
the same time providing differentiated service and soft
service-time guarantees to graphical applications.

GuiServ exemplifies Tessellation’s view of QoS-
aware, parallel services. As shown in Figure 4, GuiS-
erv resides in a dedicated cell with sole control of the
video output devices (e.g., framebuffer) and human-
interface devices (e.g., keyboard and mouse). Visual
applications communicate with GuiServ through inter-
cell channels. Both client requests and input event
notifications travel through these channels. A client
library facilitates development of visual applications;
it offers a friendly, high-level API to manage connec-
tions and interact with GuiServ.

GuiServ provides reserved fractions of processor
capacity and performance isolation to visual applica-
tions. Applications demanding service-time guaran-
tees agree on and respect certain conditions for us-
ing GuiServ. Typical conditions are, for example, a
maximum inter-arrival rate (MIR) for service requests,
specified as the maximum number of requests in a time

period, and maximum number of outstanding requests
at any given time. The desired service-time bound, ca-
pacity reservation, and conditions of use can all be in-
cluded in the Service Level Agreement (SLA) between
an application and GuiServ.

In Section 3.1 we propose a simple, yet practical
approach to establishing SLAs between visual appli-
cations and GuiServ. This process is one of discover-
ing the underlying system resources required to guar-
antee the behavior desired by clients. We follow in
Section 3.2 by describing how we utilize the features
of Tessellation OS to enforce these SLAs and provide
soft real-time guarantees to graphical applications. As
an additional benefit, SLA enforcement helps to make
GuiServ immune to denial-of-service (DoS) attacks.

3.1 Providing SLAs for the GUI Service

Traditional real-time systems utilize static per-
formance models of their software components to fa-
cilitate proper scheduling of client threads. Develop-
ers must test, analyze, and profile their applications to
calculate their application’s demands from the system.
This traditional approach is complex, time-consuming,
and brittle (under changes in system resources). Since
we are targeting a more general pool of developers and
target systems, it is not practical to assume the pres-
ence of static, a-priori performance models.

We propose to use an alternative approach: an
online profiling API for establishing resource require-
ments. In this approach, clients start with non-real-
time, best-effort guarantees from GuiServ.? Once a
client has initiated contact with GuiServ, it may start
marking some of its requests as probe requests, namely
those for which the client wishes to achieve real-time
guarantees. GuiServ runs these requests on some re-
served CPU bandwidth (e.g., 10%) to estimate their
resource demands.

After sending enough probe requests, the client
may ask GuiServ about the guarantees that it can pro-
vide to the client. GuiServ will calculate the amount of
CPU bandwidth it has left, and using the data gath-
ered from profiling the probe requests, it will deter-
mine the service time that it can guarantee for each
type of probe request, and report the results to the
client. If the client finds the proposed terms accept-
able, these guarantees will be formalized as an SLA.
GuiServ may refuse to report any service times or CPU
bandwidth if it deems that it has not procured enough
data from the probe requests or if it does not have
enough resources to make guarantees.

Although this approach may be ill-suited for hard
real-time tasks, it provides a practical and relatively

2GuiServ reserves some CPU bandwidth (e.g., 40%) for best-
effort clients, processing their requests in round-robin fashion,
much as a traditional windowing server.

easy way for the common developer to request soft
real-time guarantees for its applications without hav-
ing to manually profile them.

3.2 GUI Service’s Software Architecture

Figure 5 shows the basic architecture of GuiServ
that allows it to guarantee SLAs with clients once they
have been established. In the following, we discuss the
specifics, including Rendering Tasks, responsible for
rendering graphics and video processing requests, In-
put Event Handler Tasks, which forward input events
from human-interface devices to clients and/or the ser-
vice, and the Window-Manager (WM) Task, responsi-
ble for window creation, movement, and destruction.
Other details are omitted due to space limitations.

Rendering Tasks. Rendering tasks do the heavy
lifting in GuiServ and can be computationally expen-
sive. They also have a primary role in providing guar-
antees to clients. To enable parallel execution, GuiServ
dedicates a channel, a Rendering Task and a wvirtual
framebuffer (VFB) to each client application. Since
Rendering Tasks serve different clients, they can ex-
ecute in parallel without need to coordinate among
themselves.

Clients group requests into atomic “actions”
which represent consistent updates to a client window
(e.g., a complete video frame). SLAs reference actions,
rather than individual requests. Each Rendering Task
processes requests from input channels in FIFO order
and updates its VFB. Once the last request for an ac-
tion is processed the task clips the graphics content of
its VFB (based on the location of its window on the
screen), then copies the resulting content to the real
framebuffer.

To provide guarantees to clients, Rendering Tasks
are scheduled as Multiprocessor Aperiodic Servers
(MASs) [4] under the Multiprocessor Constant-
Bandwidth Server (M-CBS) scheme [3]. The MAS/M-
CBS reservation scheme ensures each Rendering Task
RT; a fraction of processor capacity (specified by two
parameters: a worst-case utilization U; and a period
P;) and isolation from the effects of other tasks. Us-
ing capacity reservations for Rendering Tasks prevents
any application from monopolizing GuiServ.

A Rendering Task, if not active, can be triggered
upon the arrival of request messages in the input chan-
nel. The mechanism by which this triggering occurs is
a vital aspect of providing guarantees. For instance,
if Rendering Tasks are awoken directly by message ar-
rival, the channel notification mechanism must limit
the number and frequency of requests that clients can
inject, so that no client exceeds the parameters in their
SLAs. An alternative is to have a Front-End Task that
periodically inspects the channels and spawns Ren-
dering Tasks, if required, while restricting the pro-

Mouse

Keyboard

Visual Vlsual
App 0 App 1
Cell AI/\l CellB
ﬁChannel
Taken. _. {}_ D{}

care Of -~ 7 Front End

S e Task
Rendering
Task
(MAS)
|

VFB tj ‘

Input
Events

Input Event
Handler Task

User-Level
Input-Device
Drivers

Window-
Manager
Task (MAS)

Exclusive
RW Access

| | ||'screen
17 |IRegion
= IMap

Cell G \ \

Framebuffer Monitor

Figure 5: Software architecture of the GUI Service. Paral-
lel Rendering Tasks process client requests while honoring
client SLAs. Results placed into wvirtual framebuffers are
later clipped and combined to produce final image.

cessing of requests from clients that abuse their SLA
limits. The Front-End Task can be scheduled using
global Earliest-Deadline-First (EDF), which is com-
patible with the use of MAS for Rendering Tasks.

Input Event Handler Tasks. The Input Event
Handler Tasks are part of the user-level input-device
drivers encapsulated in the GuiServ cell. A task of this
type determines the receiver application for each event
and either delivers the corresponding event directly to
the application or transforms the event into a request
associated with the application. GuiServ thus allows
screen updates without involving any application for
actions like window movements.

Window Management (WM) Task. The WM
Task controls the visible regions occupied by client
windows. It handles requests for window management
tasks such as window creation, movement, and de-
struction. The WM Task manages the Screen-Region
Map and related data structures that represent the ap-
plication windows, and has exclusive write-read access
to them (see Figure 5). This task is also implemented
as a MAS and may be triggered by Input Event Han-
dler Tasks and the Front-End Task.

Controlling the exclusive access between the WM
Task and the Rendering Tasks to the Screen-Region
Map and related data structures is an important as-
pect in GuiServ’s design, since it can directly af-
fect the responsiveness of GuiServ. We are currently
evaluating the use of an adaptation of the Multipro-

cessor Bandwidth Inheritance (M-BWI) protocol [6],
which is a synchronization protocol for shared-memory
multiprocessors closely related to the MAS/M-CBS
scheme [3, 4]. We are comparing with an alterna-
tive that takes advantage of two specific properties of
our design: 1) the WM Task is the only that requires
exclusive read-write access to the shared data struc-
tures, and 2) when a Rendering Task cannot access the
shared data structures because of the WM Task, the
Rendering Task can continue servicing requests and
operating on its VFB.

4 TImplementation Status

Our current GuiServ prototype is based off of the
Nano-X Window System and contains most of the el-
ements described in Section 3.2. We chose Nano-X
because it is simple and of manageable size, imple-
ments a client/server model that fits well into Tessella-
tion’s service model, directly accesses the framebuffer,
and provides a compatibility layer for X applications.
These characteristics made it easy for us to rearchi-
tect Nano-X to implement the software architecture
proposed in Section 3.2.

Our prototype uses the MAS/M-CBS |3, 4] algo-
rithm to schedule multiple Rendering Tasks on mul-
tiple cores and a virtual framebuffer per client. It
also includes the Front-End Task, which is a periodic
task scheduled under global EDF. USB device drivers
for mice and keyboards, and the corresponding Input
Event Handler Tasks (at user-level) are currently un-
der development and we have started to port Nano-X’s
window manager to Tessellation. A small set of visual
applications, including a video player and an image
viewer, have been ported to Tessellation and work with
GuiServ. We expect to augment this set rapidly once
we finish implementing the client libraries to facilitate
the development of visual applications.

Regarding Tessellation, the current prototype
runs on both Intel x86 platforms and RAMP Gold [19],
which is a FPGA-based simulator that models up
to 64 in-order 1-GHz SPARC V8 cores. Our proto-
type implements several time-multiplexing policies for
cells, including no-multiplexing, time-triggering, and
best-effort policies; an implementation of the event-
triggering policy is underway.

Tessellation currently offers two user-level
scheduling frameworks that enable construction of
application-specific schedulers. One is Lithe [15] for
building hierarchical cooperative (non-preemptive)
user-level schedulers. Lithe allows efficient hierar-
chical composition of parallel libraries and runtimes
within Tessellation OS. The other is Pulse for im-
plementing preemptive user-level schedulers. We
have implemented various schedulers, including our

MAS/M-CBS and Global EDF, using Pulse.

The inter-cell channels provide asynchronous and
lock-free single-producer single-consumer communica-
tion at user-level, via a basic version of the Non-
Blocking Buffer (NBB) [9].A preliminary implementa-
tion of the channel notification mechanism is available,
but not yet integrated with the user-level scheduling
frameworks.

One of the services in Tessellation is the Net-
work Service; it is a multi-threaded implementation
of the IwIP protocol stack.? It supports reservations
and proportional share of bandwidth based on the
mClock algorithm [8]. Currently, we only support In-
tel PRO/1000 network adapters. Aside from boot time
configurations, the network driver is entirely contained
in user-space allowing the Network Service to avoid
having to make relatively expensive system calls when
transmitting and receiving buffers. We also have prim-
itive versions of the Policy Service and File Service
that are under active development.

5 Experimental Evaluation

In this section we compare the end-to-end service
time of Tessellation’s GuiServ and Nano-X under dif-
ferent configurations and load conditions. We use two
“versions” of Nano-X: the original Nano-X running on
Linux (Nano-X/Linux) and a slightly modified Nano-
X running on Tessellation (Nano-X/Tess). The latter
preserves Nano-X’s original design and architecture,
but was modified just enough to run on Tessellation
OS within a cell. Here we collectively refer to GuiS-
erv, Nano-X/Linux and Nano-X/Tess as display sub-
systems.

We ran our experiments on a quad-core 3.4-GHz
Intel Core i7 2600 CPU with 8MB L3 cache, 4GB
RAM, and hyperthreading enabled (i.e., 8 hardware
threads). It also has an integrated Intel HD Graphics
2000 device and we interact with it using the VESA
standard. We use the latest version of Tessellation
OS for GuiServ and Nano-X/Tess, and Ubuntu 11.04
(Linux 2.6.38) for Nano-X/Linux.

In these experiments GuiServ, Nano-X/Tess, and
Nano-X/Linux all run on dedicated hardware threads.
Because they are single-threaded, Nano-X/Tess and
Nano-X/Linux are given only one thread to run on,
but GuiServ is given up to 4 hardware threads (on 2
physical processors) to take advantage of its parallel
architecture. To guarantee performance isolation be-
tween the window system and the clients, GuiServ and
Nano-X/Tess are deployed in a non-multiplexed cell.
We use cpusets to produce a similar isolated execution
environment for Nano-X/Linux.

Shttp://savannah.nongnu.org/projects/lwip

18000

16000r

140001

o
N
o
o
o

.2 100001

8000

6000

4000f

=, P

\;\‘\“* 1\(‘?’96 \X\’\ﬁ \’L‘(\(\DX\«
e e e e
Figure 6: Average, minimum, and maximum service times

g ge,)
for 8 video players sending inexpensive requests.
play g p q

End-to-End Service Time (us)

5.1 Experiment A

In our first experiment, we vary the number of
video player clients per display system, and analyze
the end-to-end service times each display system pro-
vides. End-to-end service time is defined as ¢, — treq,
where g, is the time at which the frame is copied to
the physical framebuffer, and ¢, is the time at which
the video player sends the request with the frame to
the display system.

The video format used is CIF (Common Interme-
diate Format); i.e., the video resolution is 352 x 288
and the frame rate is roughly 30 frames per second
(fps). The frames are stored in a raw format with no
compression. We purposely pick a simple raw video
encoding to ensure that the video players always have
the next frame ready to be sent when the presentation
time comes around. Each video player is implemented
as a thread of a single multi-threaded application. In
this experiment, each video player sends 1000 frames
at the rate of 30 fps. However, to try to stress the
display subsystems, we synchronize the video players
to send the frames approximately at the same time.

In Figure 6 we report the average, minimum, and
maximum service times of GuiServ, Nano-X/Tess and
Nano-X/Linux when servicing inexpensive requests
from 8 video players running simultaneously. The
number appended on to each GuiServ experiment sig-
nifies the number of hardware threads (HT) that were
given to GuiServ. In this case, we see that Nano-
X/Linux yields not only the largest average service
times, but also the largest range among all the display
systems. In contrast, GuiServ and Nano-X/Tess dis-
play stable service times with little variation. We be-
lieve this high variation in Nano-X/Linux is attributed
in part to the fact that Nano-X clients write and read
from UNIX domain sockets to communicate with the
Nano-X server. Each of these writes and reads rep-
resent a system call into the kernel, contributing to

10000
8000

4

40001

End-to-End Service Time (us)

2000}

R <5 <

: e . s e(\l\y(\

\xa“o’ wot 6‘)\5 N

Figure 7: Average, minimum, and maximum service times
for 4 video players sending expensive requests.

the high variation in service times. In Tessellation,
inter-cell communication is done via user-level chan-
nels. The fact that all communication is done in
userspace attributes to the stable measurements we
get from GuiServ and Nano-X/Tess.

The slope that we see in all GuiServ cases is due
to the natural ordering in which clients send their
frames. We can see that each step in the slope cor-
responds to however many hardware threads that are
given to GuiServ. Normally, M-CBS would smooth
out such a curve, but our M-CBS scheduler works at
the granularity of milliseconds and the processing time
required to serve each frame simply is not large enough
for the M-CBS scheduler to step in.

We also ran the experiment with 1 client to get
a baseline reading for our experiments. We saw that
Nano-X/Linux had an average, minimum, and max-
imum service times of 271 us, 242 us, and 443 ps,
respectively; Nano-X/Tess 255 us, 252 us, and 298 us;
and GuiServ 891 us , 395 us, and 1391 us. GuiServ
has an average service time larger than the other two
because the Front-End Task in GuiServ polls for new
requests every millisecond. This increases the average
service time by 500 us, which is the average time that
requests will wait in the channel until picked up by
the Front-End Task. We expect this delay to go away
once we use channel notification events to activate the
Rendering Tasks. There is also the scheduler over-
head which explains the difference in minima between
GuiServ and the Nano-X implementations.

In addition to serving simple draw requests,
GuiServ should be able to service computationally-
intensive rendering requests. In our case, this load
was simulated by adding a constant delay (spinning)
to each frame request. Figure 7 shows service times for
4 video clients, each sending computationally intensive
requests, and Figure 8 shows service times for 8 video
clients. In Figure 7, we see that all display subsystems

40000

- - 30-fps deadline
350001 1
- S
=]
~ 300001
[
£
= 25000t
(]
L
>
S 20000f 0
0 0
g 150001
w
é 0
< 10000f
S 0
50007 W’
0 NS 5 1! 4! 1!
NS S
AR Rt

Figure 8: Average, minimum, and maximum service times
for 8 video players sending expensive requests. Above each
group of clients is the total number of deadlines missed for
the group. Missed deadlines are boxed.

have similar service times when running on one hard-
ware thread. However, for an overloaded system with
8 video clients (Figure 8), Nano-X/Linux shows large
variability, while GuiServ and Nano-X/Tess show sta-
ble service times. In addition, we can clearly see the
effects of parallelization in GuiServ. In both Figures 7
and 8, the average service time for each client is halved
every time GuiServ receives twice as many hardware
threads. This suggests that GuiServ is able to ef-
ficiently use the given compute resources with little
scheduling overhead.

5.2 Experiment B

In this experiment, we evaluate GuiServ’s capa-
bilities to provide performance isolation and guaran-
teed service times to visual applications. To demon-
strate this, we have 8 video players sending compu-
tationally intensive requests. This time, however, we
have 4 clients make these requests for a 30-fps video,
while the other 4 clients submit requests for a 60-fps
video. Our goal is to show that we can adjust GuiS-
erv’s CPU bandwidth per client to meet the deadlines.

The results are presented in Figure 9. Recall that
each client sends 1000 frame requests. For the 30-fps
video players the deadline is ~ 33ms, and ~ 16ms for
the 60-fps video players. In both Nano-X/Linux and
Nano-X/Tess, we can see that the number of dead-
lines missed for the 60 fps video clients is significant
(at least 50%). However, for GuiServ, by redistribut-
ing the CPU bandwidth from the 30-fps video play-
ers to the 60-fps video players, we can reduce the
number of missed deadlines significantly, to almost no
missed deadlines. If we increase the number of hard-
ware threads GuiServ is given, we have no problem
meeting all the deadlines for all the clients.

- - 60-fps deadline
[30-fps client
3 60-fps client

End Service Time (us)

5 10000f

End-to

Figure 9: Service times for 30-fps and 60-fps video players
sending computationally intensive requests. Above each
group of clients is the total number of deadlines missed for
the group. Missed deadlines are boxed.

6 Related Work

To date, there have been very few attempts to im-
prove window systems to provide response-time guar-
antees for visual applications. ARTIFACT [18], devel-
oped in the early 90’s, is the first attempt and focuses
on streaming multimedia applications. Similar in de-
sign to our GuiServ, the ARTIFACT server has exclu-
sive control over the framebuffer, keyboard and mouse,
and applications communicate with the server via mes-
sage passing. An important distinction between ARTI-
FACT and GuiServ is how server tasks are scheduled.
Tessellation’s GUI Service assigns a task per client ap-
plication and uses a reservation scheme to offer per-
formance isolation among those tasks. Although the
authors of ARTIFACT suggest the idea of having one
task per client, they use a fixed-priority scheme, in
which the priorities of the tasks are derived from the
client applications, without regard for deadlines.

DOpE [7] is another proposal for a window sys-
tem. Unlike our GuiServ, DOpE fundamentally re-
lies on shared memory. Each client application and
the window server share a compact description of the
application’s graphical representation. The window
server can, thus, redraw the graphical representation
of any client application without the active coopera-
tion of the application.

More recently, Manica et al. [13] modified the X11
window system to achieve a similar objective. Their
solution is based on the Constant Bandwidth Server
(CBS) [1], which is a resource reservation algorithm.
Introducing limited changes to X11 and easy portabil-
ity across different X versions are some of their goals.

In contrast to the previous works, Tessellation’s
GuiServ has been designed to provide not only service-
time guarantees to visual applications but also im-
proved response times through task parallelism. For

this reason, the GUI Service uses Multiprocessor Ape-
riodic Server (MAS) [4], an adaptation of CBS reser-
vation scheme for multiprocessor systems.

7 Conclusion and Future Work

In this paper, we showed how to construct a par-
allel GUI Service which provides soft real-time guaran-
tees to visual applications. This service, called GuiS-
erv, was constructed on top of Tessellation OS, a
general-purpose multicore OS providing resource guar-
antees to applications. As demonstrated in Section 5,
our service architecture scales and imposes little sched-
uler overhead. More importantly, we provide fewer
dropped frames than a more traditional service archi-
tecture (Nano-X) running on top of Linux. As an in-
teresting aside, GuiServ is now more time predictable
than the original Nano-X.

In the future, we wish to augment GuiServ with
the ability to have multiple Rendering Tasks per client.
We could easily imagine the scenario in which a video
player has frames it wishes to render and also a pop-
up menu it wishes to draw. In this scenario, the
low-latency menu draw request should not be blocked
by the computationally intensive frame rendering re-
quests. One option would be to allocate another Ren-
dering Task for the client so that it can start drawing
the menu on to the VFB. The obvious disadvantage is
that synchronization will be required among Render-
ing Tasks and this may affect resource reservations.

We will add GPU support to GuiServ; the goal is
to have GuiServ arbitrate access to the GPU for QoS
enforcement. In addition, we are working on hardware
acceleration mechanisms for inter-cell message commu-
nication to reduce the overall service time for requests.

We also plan to investigate how we can apply
adaptive resource allocation policies to GuiServ. The
service should support graceful degradation, in the
case it loses some of its resources, and should be able to
scale to utilize any extra resources it may receive. We
are also looking at managing resources other than just
CPU time; for instance, we are investigating a mem-
ory management and page replacement policy tailored
specifically for GuiServ.

We are applying GuiServ’s software architecture
and the lessons learned from this work to the design of
Tessellation’s Network and File Services (among oth-
ers). The Network Service, for example, assigns a
protocol-stack processing task per client application,
and uses a reservation scheme to offer performance iso-
lation among the tasks. Our goal, as with this work,
is to reduce service times by parallelizing heavy-lifting
tasks and to provide soft real-time guarantees.

References

1]

(18]

(19]

L. Abeni and G. Buttazzo. Resource reservations
in dynamic real-time systems. Real-Time Systems,
27(2):123-165, 2004.

P. Barham et al. Xen and the art of virtualization. In
Proc. of SOSP’03, pages 164—-177.

S. Baruah, J. Goosens, and G. Lipari. Implementing
constant-bandwidth servers upon multiprocessors. In
Proc. of RTAS’02, pages 154-163.

S. Baruah and G. Lipari. Executing aperiodic jobs
in a multiprocessor constant-bandwidth server imple-
mentation. In Proc. of ECRTS 04, pages 109-116.

J. A. Colmenares et al. Resource management in the
Tessellation manycore OS. In Proc. of HotPar’10.

D. Faggioli et al. The multiprocessor bandwidth in-
heritance protocol. In Proc. of ECRTS 2010, pages
90-99.

N. Feske and H. Hartig. DOpE — a window server for
real-time and embedded systems. Technical Report
TUD FI03 10 September 2003.

A. Gulati et al. mClock: handling throughput vari-
ability for hypervisor IO scheduling. In Proc. of
0SDI’10, pages 1-7.

K. H. Kim et al. Efficient adaptations of the non-
blocking buffer for event message communication be-
tween real-time threads. In Proc. of ISORC’07, pages
29-40.

J. W. Lee et al. Globally-synchronized frames for
guaranteed quality-of-service in on-chip networks. In
Proc. of ISCA’08, pages 89—100.

J. Liedtke. On micro-kernel construction.
SIGOPS Oper. Syst. Rev., 29:237-250, 1995.

L. Luo and M.-Y. Zhu. Partitioning based operating
system: a formal model. ACM SIGOPS Oper. Syst.
Rev., 37(3):23-35, 2003.

N. Manica et al. QoS support in the X11 window
system. In Proc. of RTAS’ 08, pages 103-112.

J. Ousterhout. Scheduling techniques for concurrent
systems. In Proc. of ICDCS’82.

H. Pan et al. Composing parallel software efficiently
with Lithe. In Proc. of PLDI’10, pages 376-387.

M. Paolieri et al. Hardware support for WCET anal-
ysis of hard real-time multicore systems. SIGARCH
Comput. Archit. News, 37:57-68, June 2009.

J. Rushby. Partitioning for avionics architectures:
requirements, mechanisms, and assurance. Techni-
cal Report CR-1999-209347, NASA Langley Research
Center, June 1999.

J. E. Sasinowski and J. K. Strosnider. ARTIFACT:
A platform for evaluating real-time window system
designs. In Proc. of RTSS’95, pages 342—-352.

Z. Tan et al. A case for FAME: FPGA architecture
model execution. SIGARCH Comput. Archit. News,
38(3):290-301, 2010.

ACM

